| Reg. No. : |  |  |
|------------|--|--|
|------------|--|--|

# Question Paper Code: 70516

### B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023.

#### Fifth Semester

Electronics and Communication Engineering

#### EC 8501 - DIGITAL COMMUNICATION

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

#### PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. State the properties of mutual information.
- 2. What is Binary symmetric channel?
- 3. Mention the drawbacks of Delta modulation.
- 4. Express the data 101011 using the Manchester code format.
- 5. Define Equalization.
- 6. List the properties of matched filter.
- 7. Differentiate coherent and Non coherent receivers.
- 8. Draw the constellation diagram of 8 QAM Modulation.
- 9. What is the use of error control coding in Digital Communication?
- 10. How the convolutional codes are different from block codes?

## PART B — $(5 \times 13 = 65 \text{ marks})$

Derive the Shannon's channel capacity theorem and show that the 11. (a) channel capacity is  $C = B \log_2 \left( 1 + \frac{P}{N_0 B} \right) b/s$ .

- A discrete memory less source has an alphabet of seven symbols with (b) probabilities [0.4, 0.14, 0.16, 0.15, 0.05, 0.1]. Compute the Huffman code for this source symbols. Also determine average codeword length and efficiency.
- Construct and explain Delta modulation system with neat block diagram 12. (a) and waveforms.

Or

- Explain the operating principle of Adaptive Delta modulation. Also (i) (b) (7)list its advantages.
  - Briefly discuss about the properties of line codes. (6)(ii)
- State and prove Nyquist criterion for distortion less base band binary 13. (a) transmission.

Or

- Illustrate the effect of ISI in base-band binary data transmission (b) (i) system.
  - Explain the design procedure to obtain the impulse response (ii) (7)coefficients of a zero forcing equalizer.
- Derive the expression for bit error probability of Binary phase shift 14. (a) keying scheme with appropriate signal space diagram.

Or

- Construct and explain the generation and detection of coherent QPSK (b) scheme with neat diagrams.
- Consider the generator polynomial of the cyclic encoder as (a) (i) 15.  $g(x) = 1 + x + x^3$ . Determine the encoded code word for the message sequence 1011.
  - Explain in detail about the syndrome decoding procedure of linear (ii) block codes.

Or

- (b) Consider the generator polynomial of the Convolutional encoder  $g_1(x) = 1 + x + x^2$ ; and  $g_2(x) = 1 + x^2$ .
  - (i) Draw the structure of the convolutional encoder. (6)
  - (ii) Determine the convolution code for the data sequence 101011. (7)

PART C —  $(1 \times 15 = 15 \text{ marks})$ 

- 16. (a) Consider a (6, 3) systematic linear block code in which the three parity check digits are given as  $c_4 = d_1 + d_2 + d_3$ ;  $c_5 = d_1 + d_2$ ;  $c_6 = d_1 + d_3$ .
  - (i) Construct the appropriate generator matrix for this code. (4)
  - (ii) Construct all possible code words generated by this matrix. (4)
  - (iii) Determine the error correcting capability of this code. (4)
  - (iv) Prepare a suitable decoding table and decode the following received codes 101100, 100110. (3)

Or

(b) The input source to a noisy communication channel is a random variable X over the four symbols a, b, c, d. The output from this channel is a random variable Y over these same four symbols. The joint distribution of these two random variables p(X,Y) is as follows:

$$p(X,Y) = \begin{bmatrix} 0.125 & 0.0625 & 0.0625 & 0.25 \\ 0.0625 & 0.125 & 0.0625 & 0 \\ 0.03125 & 0.03125 & 0.0625 & 0 \\ 0.03125 & 0.03125 & 0.0625 & 0 \end{bmatrix}.$$
 Find the Entropy

H(X), H(Y), H(Y/X) and H(X,Y).